Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887276

RESUMO

p190RhoGAP, which exists in two paralogs, p190RhoGAP-A (p190A) and p190RhoGAP-B (p190B), is a GTPase activating protein (GAP) contributing to the regulation of the cellular activity of RhoGTPases. Recent data showed that M2 muscarinic acetylcholine receptor (M2R) stimulation in neonatal rat cardiac myocytes (NRCM) induces the binding of p190RhoGAP to the long isoform of the regulator of G protein signaling 3 (RGS3L). This complex formation alters the substrate preference of p190RhoGAP from RhoA to Rac1. By analyzing carbachol-stimulated GAP activity, we show herein that p190A, but not p190B, alters its substrate preference in NRCM. Based on data that the RhoGAP activity of p190A in endothelial cells is diminished upon nitration by endothelial nitric oxide synthase (eNOS)-derived peroxynitrite, we studied whether carbachol-induced NO/peroxynitrite formation contributes to the carbachol-induced RhoA activation in NRCM. Interestingly, the carbachol-induced RhoA activation in NRCM was suppressed by the eNOS-preferring inhibitor L-NIO as well as the non-selective NOS inhibitor L-NAME. Using L-NIO, we firstly verified the carbachol-induced NO production concurrent with eNOS activation and, secondly, the carbachol-induced nitration of p190A in NRCM. By co-immunoprecipitation, the carbachol-induced complex formation of eNOS, p190A, RGS3L and caveolin-3 was detected. We thus conclude that the NO production by M2R-induced eNOS activation in caveolae in NRCM is required for the nitration of p190A, leading to the binding to RGS3L and the change in substrate preference from RhoA to Rac1. In line with this interpretation, the disruption of caveolae in NRCM by methyl-ß-cyclodextrin suppressed carbachol-induced RhoA activation in NRCM to a similar extent as the inhibition of NO production.


Assuntos
Acetilcolina , Óxido Nítrico Sintase Tipo III , Ratos , Animais , Miócitos Cardíacos/metabolismo , Carbacol/farmacologia , Células Endoteliais/metabolismo , Ácido Peroxinitroso , Receptores Muscarínicos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Colinérgicos
2.
Basic Res Cardiol ; 117(1): 8, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230541

RESUMO

The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Colinérgicos , Ventrículos do Coração , Ratos , Receptores Muscarínicos
3.
J Cell Sci ; 132(5)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659117

RESUMO

Fibroblasts show a high range of phenotypic plasticity, including transdifferentiation into myofibroblasts. Myofibroblasts are responsible for generation of the contraction forces that are important for wound healing and scar formation. Overactive myofibroblasts, by contrast, are involved in abnormal scarring. Cell stretching and extracellular signals such as transforming growth factor ß can induce the myofibroblastic program, whereas microenvironmental conditions such as reduced tissue oxygenation have an inhibitory effect. We investigated the effects of hypoxia on myofibroblastic properties and linked this to RhoA activity. Hypoxia reversed the myofibroblastic phenotype of primary fibroblasts. This was accompanied by decreased αSMA (ACTA2) expression, alterations in cell contractility, actin reorganization and RhoA activity. We identified a hypoxia-inducible induction of ARHGAP29, which is critically involved in myocardin-related transcription factor-A (MRTF-A) signaling, the differentiation state of myofibroblasts and modulates RhoA activity. This novel link between hypoxia and MRTF-A signaling is likely to be important for ischemia-induced tissue remodeling and the fibrotic response.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cicatriz/metabolismo , Fibroblastos/fisiologia , Hipóxia/metabolismo , Miofibroblastos/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Plasticidade Celular , Transdiferenciação Celular , Proteínas Ativadoras de GTPase/metabolismo , Camundongos , Transdução de Sinais , Transativadores/metabolismo
4.
EMBO Mol Med ; 10(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29907596

RESUMO

The myocyte enhancer factor 2 (MEF2) regulates transcription in cardiac myocytes and adverse remodeling of adult hearts. Activators of G protein-coupled receptors (GPCRs) have been reported to activate MEF2, but a comprehensive analysis of GPCR activators that regulate MEF2 has to our knowledge not been performed. Here, we tested several GPCR agonists regarding their ability to activate a MEF2 reporter in neonatal rat ventricular myocytes. The inflammatory mediator prostaglandin E2 (PGE2) strongly activated MEF2. Using pharmacological and protein-based inhibitors, we demonstrated that PGE2 regulates MEF2 via the EP3 receptor, the ßγ subunit of Gi/o protein and two concomitantly activated downstream pathways. The first consists of Tiam1, Rac1, and its effector p21-activated kinase 2, the second of protein kinase D. Both pathways converge on and inactivate histone deacetylase 5 (HDAC5) and thereby de-repress MEF2. In vivo, endotoxemia in MEF2-reporter mice induced upregulation of PGE2 and MEF2 activation. Our findings provide an unexpected new link between inflammation and cardiac remodeling by de-repression of MEF2 through HDAC5 inactivation, which has potential implications for new strategies to treat inflammatory cardiomyopathies.


Assuntos
Dinoprostona/metabolismo , Mediadores da Inflamação/metabolismo , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução de Sinais , Animais , Feminino , Histona Desacetilases/metabolismo , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Ratos Sprague-Dawley
5.
J Pharmacol Exp Ther ; 347(1): 69-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23887096

RESUMO

Small molecules interfering with Rac1 activation are considered as potential drugs and are already studied in animal models. A widely used inhibitor without reported attenuation of RhoA activity is NSC23766 [(N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride]. We found that NSC23766 inhibits the M2 muscarinic acetylcholine receptor (M2 mAChR)-induced Rac1 activation in neonatal rat cardiac myocytes. Surprisingly, NSC27366 concomitantly suppressed the carbachol-induced RhoA activation and a M2 mAChR-induced inotropic response in isolated neonatal rat hearts requiring the activation of Rho-dependent kinases. We therefore aimed to identify the mechanisms by which NSC23766 interferes with the differentially mediated, M2 mAChR-induced responses. Interestingly, NSC23766 caused a rightward shift of the carbachol concentration response curve for the positive inotropic response without modifying carbachol efficacy. To analyze the specificity of NSC23766, we compared the carbachol and the similarly Gißγ-mediated, adenosine-induced activation of Gi protein-regulated potassium channel (GIRK) channels in human atrial myocytes. Application of NSC23766 blocked the carbachol-induced K(+) current but had no effect on the adenosine-induced GIRK current. Similarly, an adenosine A1 receptor-induced positive inotropic response in neonatal rat hearts was not attenuated by NSC23766. To investigate its specificity toward the different mAChR types, we studied the carbachol-induced elevation of intracellular Ca(2+) concentrations in human embryonic kidney 293 (HEK-293) cells expressing M1, M2, or M3 mAChRs. NSC23766 caused a concentration-dependent rightward shift of the carbachol concentration response curves at all mAChRs. Thus, NSC23766 is not only an inhibitor of Rac1 activation, but it is within the same concentration range a competitive antagonist at mAChRs. Molecular docking analysis at M2 and M3 mAChR crystal structures confirmed this interpretation.


Assuntos
Aminoquinolinas/farmacologia , Ligação Competitiva/fisiologia , Antagonistas Muscarínicos/metabolismo , Pirimidinas/farmacologia , Receptores Muscarínicos/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Ligação Competitiva/efeitos dos fármacos , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Antagonistas Muscarínicos/farmacologia , Técnicas de Cultura de Órgãos , Gravidez , Ratos , Ratos Wistar
6.
Cell Signal ; 25(6): 1388-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499677

RESUMO

p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac-Rho antagonism than it was realized earlier.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas Repressoras/metabolismo , Citoesqueleto de Actina , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Camundongos , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas rac de Ligação ao GTP/metabolismo
7.
Small GTPases ; 3(3): 178-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751505

RESUMO

Regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) determine the activity of small GTPases. In the Rho/Rac family, the number of GEFs and GAPs largely exceeds the number of small GTPases, raising the question of specific or overlapping functions. In our recent study we investigated the first time ARHGAP25 at the protein level, determined its activity as RacGAP and showed its involvement in phagocytosis. With the discovery of ARHGAP25, the number of RacGAPs described in phagocytes is increased to six. We provide data that indicate the specific functions of selected Rho/RacGAPs and we show an example of differential regulation of a Rho/Rac family GAP by different kinases. We propose that the abundance of Rho/Rac family GAPs is an important element of the fine spatiotemporal regulation of diverse cellular functions.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Animais , Proteínas Ativadoras de GTPase/química , Humanos , NADPH Oxidases/metabolismo , Fagocitose , Fosforilação , Estrutura Terciária de Proteína
8.
Mol Cell Endocrinol ; 353(1-2): 10-20, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22108439

RESUMO

Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.


Assuntos
Doenças do Sistema Endócrino/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Transporte Biológico Ativo/genética , Movimento Celular/genética , Proliferação de Células , Forma Celular/genética , Doenças do Sistema Endócrino/genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica/genética
9.
Biochemistry ; 48(36): 8615-23, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19673492

RESUMO

The Rho family GTPases are stringently regulated through the action of a large family of GTPase activating proteins (GAPs) that stimulate their relatively weak intrinsic GTP hydrolyzing activity. The p190RhoGAPs, which include the p190A and p190B proteins, are potent and widely expressed GAPs acting on both Rho and Rac GTPases. We have observed that several acidic phospholipids inhibit the RhoGAP activity and promote the RacGAP activity of p190 proteins. In liposome binding assays we have demonstrated that binding of p190A to phospholipids is controlled by electrostatic interactions. Using mapping techniques, we determined that a small polybasic peptide stretch within p190A is a common site for both the phospholipid binding and PKC phosphorylation. Moreover, PKC-mediated phosphorylation of two amino acids (serine-1221 and threonine-1226) within this region of p190A prevents the binding and substrate specificity regulation by phospholipids. Transfection of COS-7 cells with mutant forms of p190A either unable to bind to phospholipids or unable to become phosphorylated induced distinct morphological changes. Together, these findings reveal a novel GAP regulatory mechanism in which phosphorylation indirectly alters GTPase substrate preference by affecting the interaction with acidic phospholipids. Our observations provide a potential mechanism of Rac/Rho antagonism described in several cellular functions.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfolipídeos/metabolismo , Proteína Quinase C-alfa/fisiologia , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Lipossomos , Fosforilação , Proteínas Repressoras/química , Proteínas Repressoras/genética , Spodoptera , Especificidade por Substrato
10.
J Biol Chem ; 283(30): 20978-88, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18502760

RESUMO

The Rho GTPases are critical regulators of the actin cytoskeleton and are required for cell adhesion, migration, and polarity. Among the key Rho regulatory proteins in the context of cell migration are the p190 RhoGAPs (p190A and p190B), which function to modulate Rho signaling in response to integrin engagement. The p190 RhoGAPs undergo complex regulation, including phosphorylation by several identified kinases, interactions with phospholipids, and association with a variety of cellular proteins. Here, we have identified an additional regulatory mechanism unique to p190A RhoGAP that involves priming-dependent phosphorylation by glycogen synthase-3-beta (GSK-3beta), a kinase previously implicated in establishing cell polarity. We found that p190A-deficient fibroblasts exhibit a defect in directional cell migration reflecting a requirement for GSK-3beta-mediated phosphorylation of amino acids in the C-terminal "tail" of p190A. This phosphorylation leads to inhibition of p190A RhoGAP activity in vitro and in vivo. These studies identify p190A as a novel GSK-3beta substrate and reveal a mechanism by which GSK-3beta contributes to cellular polarization in directionally migrating cells via effects on Rho GTPase activity.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Quinase 3 da Glicogênio Sintase/química , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Movimento Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos
11.
Pediatr Allergy Immunol ; 17(6): 444-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16925690

RESUMO

The function of apoptosis is to eliminate unnecessary or dangerous cells. The balance between production and death is important in the control of cell numbers within physiological ranges. Cells involved in allergic reactions may have altered apoptosis. The aim of this study was to examine the seasonal changes of programmed cell death in children with pollen allergy. We measured serum levels of soluble Fas (sFas) and soluble Fas ligand (sFasL), and examined whether there was any correlation between soluble apoptosis markers and development of asthma and or rhinitis in children with pollen allergy. We examined two groups of patients with ragweed pollen allergy. The first group consisted of 17 children with 'rhinitis only'. The second group consisted of 16 children with 'asthma + rhinitis'. For seasonal analysis we pooled the two groups and termed this the 'ragweed sensitive' group (n = 33, 5-18 yr, 25 boys, eight girls). Measurements (sFas and sFasL) were taken during the ragweed pollen allergy season, while control measurements were performed during the symptom-free period. There was no difference in sFas levels measured during and after [1941 +/- 68, 1963 +/- 83 pg/ml (mean+/-s.e.m, respectively)] the pollen season in the 'ragweed sensitive' group. The sFasL level showed seasonal change, which was significantly higher (p = 0.0086) in the symptomatic period compared to the symptom-free state (99 +/- 13 and 53 +/- 16 pg/ml, respectively). There was a difference between the 'rhinitis only' and the 'asthma + rhinitis' groups in the measured parameters of apoptosis. Children having allergic rhinitis combined with asthma had a significantly (p = 0.03) higher sFas level in the symptom-free state than the 'rhinitis only' group did (2115 +/- 156 and 1820 +/- 52 pg/ml, respectively). During the allergic symptom state the sFasL level of the 'asthma + rhinitis' group was significantly higher (p = 0.025) than that of the 'rhinitis only' group (125 +/- 20 and 75 +/- 14 pg/ml, respectively). In conclusion, the increased level of sFasL during the pollen season may signal its role in the pathogenesis of allergic airway diseases. There was no seasonal change in sFas levels in the examined ragweed allergic group, however in the symptomatic period we observed a diminished level of antiapoptotic factor (sFas) and an elevated level of proapoptotic factor (sFasL) if there was a combined disease with pollen allergic asthma. We suggest that there is a deviation in the apoptotic reaction in children that may increase the seasonal allergic inflammation.


Assuntos
Ambrosia/imunologia , Asma/sangue , Glicoproteínas de Membrana/sangue , Rinite Alérgica Sazonal/sangue , Fatores de Necrose Tumoral/sangue , Apoptose , Asma/imunologia , Criança , Eosinófilos/imunologia , Proteína Ligante Fas , Feminino , Volume Expiratório Forçado , Humanos , Imunoglobulina E/sangue , Masculino , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...